友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
宇宙和生命-第822部分
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!
要空间来存放遗传物质以供其机体生长、运动和繁衍。在地球
上,大多数细菌的长度在0.5至20微米之间(一微米是百万分
之一米,即10…6米)。在火星样品中发现的这些物体的大小
则在20至100纳米之间(一纳米是十亿分之一米)。 换言之,
即便是其中个头最大的也要比地球上最小的普通细菌小几百倍。
直到最近有研究者在地球上发现了与那些火星物体大小相
近的微生物之前,科学家一直抱着这样的观点。微生物学家史
蒂文斯(Todd Stevens)在美国华盛顿州里士满的太平洋西北实
验室工作。他声称发现了大小仅两倍于火星样品中的最大个体
的细菌。这些古怪的生物生长在华盛顿州哥伦比亚河河底深处
的岩缝中。它们没有有机食物来源,也没有阳光的照射,它们
靠水和岩石之间的某种化学反应来产生能量,制造氢气,随后
利用氢气将二氧化碳转化成甲烷——一种获取能量的化学过程。
有趣的是,所有这些原材料在40亿年前这类微生物形成的时期,
火星上全都存在。
另一位研究人员福克(Robert Folk)在意大利的热泉中也
发现了大小与前述火星化石相仿的细菌化石。他估计这些化石
有20亿年的年龄, 但其大小与与艾伦山84001中发现的一些最
大的个体大小相同。
还有一条反对意见涉及嵌有那些化石的碳酸盐化合物的性
质。麦凯及他的组员认为这是某种生物学活动引起的——火星
生物的排泄产物。另一些人则认为当这块岩石从火星上分离飞
入太空时也会产生类似的化合物。
甚至在陨石和微生物的实际年龄这一问题上也存在着分歧。
国家航天局科研小组称这些微生物距今有36亿~40亿年之久,
但根据芝加哥菲尔德博物馆的沃德瓦(Meenakshi Wadhwa)博
士的实验结果,岩石中的碳酸盐和生命物质可能只有13.9亿
年,误差在1亿年左右。
如果这是真的话,那么对于这块陨石和在它上面发现的微
生物的地球化学及生物学分析就将完全不同。不过,这并不意
味着那些印记一定不是某种非常简单的古老火星生命的化石。
我们对于生命如何在其他星球上起源和演化知之甚少,而且根
据福克的研究,在这两个相距极远的时期里(他那些生物估计
是20亿年前的,国家航天局的前述结果是36亿~40亿年,而沃
德瓦博士的估计则为13。9亿年),地球上也已存在着类似的与
世隔绝的生物。
面对一系列的质疑,麦凯及其小组目前正在进行更深入的
实验。有些成员认为这是一些在首次发布消息前早该进行的试
验。化学组的扎雷教授正在分析样本、希望借以证明岩石中的
PAHs来自火星,而非地球上的污染所致。看起来这确实是最有
说服力的方法,只是成功实施的困难极大。
该研究小组的下一个目标是找到氨基酸,或找到他们宣称
在这块岩石上发现的细胞的内部结构。氨基酸是生命的基本构
件,所有生命中都有这种物质、它们形成更大的分子群——蛋
白质,并在脱氧核糖核酸(DNA)和核糖核酸(RNA)等生物
化学物质的形成过程中起着重要作用,这些都是生命物质的标
记(关于这些化合物之间的相互关系请参见下一章)。问题在
于麦凯他们所发现的细胞状物体如此微小,以至于从中发现其
内部结构或成分已非当今光学技术力所能及。看来要证实其发
现的最佳途径就是发明更先进的观测仪器来一探这些微小结构
的究竟。
支持国家航天局结论的另一条途径是在更多的火星陨石上
发现微生物化石。截至本书撰写之时,只有一个英国研究小组
有一些模棱两可的发现。具有讽刺意味的是,他们首先考虑到
艾伦山84001中的微生物, 却被美国人的声明抢尽风头。
1994年向全世界各地的研究人员发送陨石艾伦山84001 的
小样品时,有一份正是送到开放大学皮林格教授的办公桌上
(就是那位1998年时驳斥对这块南极陨石来源置疑的教授)。
他与一对现在伦敦自然博物馆任职的夫妻搭挡赖特(Ian Wright)
博士和格雷迪博士一起对样品进行了分析。他们什么也没有发
现。但是他们与火星陨石的缘份还未就此结束。
在美国的小组开始研究艾伦山84001之前5年,赖特和格雷
迪一直在分析另一块类似的陨石。这块代号为EETA79001的石
头是1979年在南极发现的,这时距艾伦山84001的出现尚有5年。
在认真分析了EETA79001之后,这个英国研究小组在具有
相当影响的科学期刊《自然》上公布了他们的发现。他们的结
论是,这块陨石的有机物质浓度相当高,其中有包括与后来在
艾伦山84001化石四周发现的碳酸盐相似的分子。岩石内部PAHs
的含量明显比外表高。但关健的是,他们考虑到陨石受地球物
质污染的因素而不能断定这是不是火星生命的化石。
他们的另一个疑惑是EETA79001要比艾伦山84001年轻许多。
按他们的估计只有1.8亿年(大约是艾伦山84001年龄的1/20),
而且是最近60万年才脱离火星的(大约是直立人漫游非洲平原
的时候)。
这一截然不同的时间框架意味着:如果他们真的发现了火
星上的生物化石,那么,大约在60万年到1.8亿年以前火星上
是有生命的。大多数科学家都鉴于现代火星的环境如此恶劣而
认为几乎不存在这种可能。由于这些疑惑,皮林格及其同事在
《自然》杂志上发表的论文中低调他说,这一发现具有“显而
易见的内涵”。
当全世界在国家航天局的发现面前觉醒的时候,皮林格等
人也为之激动,公开了他们的研究并进行了一些补充。现在,
国家航天局也承认皮林格等人作出了“非常重要的贡献”。国
家航天局的一位研究人员说:“我们今天之所以完成了对艾伦
山84001的许多研究, 在很大程度上是受这些英国人及其他人
早先对火星陨石的研究的鼓舞。”。'8'
公正他说来,英国人的发现并没有美国科学家对艾伦山84001
的研究那样具有决定意义。不过,看来英国人的保守确实使开
放大学和英国自然博物馆的研究者们失去了发现可能是本世纪
(如果不是空前绝后的)最重要发现的机会。
那么,我们从这些或支持或反对的声明中,从那些或证实
或反驳艾伦山84001含有原始化石的证据中能得到什么结论呢?
似乎各派评论家和科学家的不同呼声中只有一点是肯定的:在
我们能确认南极艾伦山这块火星陨石的不同寻常之处确实来自
另一个世界的生物化石之前,我们还有太多太多的研究工作要
做。
上面已经提过, 目前的证据开始越来越倾向艾伦山84001
上的生物是地球微生物这一说法。但对于冷静客观的观察者来
说,在该陨石上发现的那些化石的不寻常的性质仍然是一个难
解的神秘疑团。
显然,几乎所有听说这个发现的人,更不用说那些对结果
(无论出于什么动机)抱有极大兴趣的人了,都希望该陨石碎
片中那些长形、圆形的印记会是某种生命的残余。当然,即使
有一天找到确凿的证据证明陨石艾伦山84001起源于地球, 这
也不能解释英国人对EETA79001做出的发现,也不能否决火星
上也许曾经存在过生命的想法。
有趣的是,自从这次的发现后,出版商希尔(William Hill)
已将在火星上发现智慧生命的赌注赔率从500比1缩小到了25比
1。 当然,希望不等于事实。威廉·;斯考夫说得好:非凡的结
论需要不同寻常的证据。
__________
①辟尔唐人:这是科学史上最著名的骗局之一。“辟尔唐人”学
名Eoanthropus dawsoni,是1912年在英国辟尔唐发现的”人类头
骨”,1953年被证实是蓄意伪造人与猿之间失落的一环。
第二章 什么是生命?
“谁说我们不会是火星人?”
——理查德·;扎雷
什么是生命?乍一看,答案似乎很显然,但事实上要完整
而合乎逻辑地回答这一问题却相当困难。
如果说生命就是能够成长,能够运动的东西,恐怕并不贴
切。毕竟。晶体也能够成长——它能产生规则的结构,复制出
与细胞形态极为相似的单元。毫无生命的水或其他液体能够流
动,或者说运动,这显然不足以用来定义生命。
也许稍加思索后,你会说:所有的生命都消耗能量。然而,
从除草机到计算机,从汽车到宇宙飞船,所有这些机器也都消
耗能量。比较确切的定义或许是:生命拥有控制能量的能力。
不过一些高级的机器,特别是近几年来运用模糊逻辑设计的某
些先进的机器也具有这样的能力。
我们通过一个有趣的例子来看看要对“生命”下定义是何
等的困难。请想象一下,如果外星观察者们发现了因特网,假
如他们还没有注意到使用网络的是人类,他们会做出什么样的
判断呢?控制论专家沃里克(Kevin Warwick)描述了外星种族
面对因特网时会提出的一系列问题:
以下7条关于生命的测试中,它真正能通过的有几
条呢?
它成长吗?当然:事实上在过去几年中,这种网络
成长的速度相当惊人。它具有行动能力吗?绝对有:例
如网络中的那些开关路由。对外界有没有反应呢?对外
界刺激的响应原本就是网络的基本职责。需要营养吗?
确实需要:信息(一种或另一种形式的能量)不断输入
网络中。具有排泄功能吗?有啊:信息最终是要送出网
络的。是否呼吸呢?这稍微有些难理解,不过如果考虑
一下电脉冲在网络中的传播,这也是正确的。最后是繁
殖,这也是最难说明的一点。也许我们可以从最初的网
络又在其他地方衍生出新的网络这样一个过程中作出推
论。'1'
另一种对于“生命”的理解是:只有生命处理和存储信息。
但这不就是计算机特有的用途吗?虽然关于将来是否可能利用
复杂的计算机来发展人工智能的争论十分激烈(我们将在第三
章里讨论),至少目前的计算机还不能被看成有生命的东西(
尽管它也处理信息)。那么,我们要如何来清楚明白地抓住要
点,把有生命的东西与无生命的物体区分开来呢?
传统教科书上有这样一条定义:所有生命都呈现出3个“f”
的特性:攻击(fight)、移动(flight)和繁殖(frolic)。它也同
样使我们陷入逻辑上的麻烦。繁殖事实上是“复制”的委婉语,
而且是迅捷的“复制”,有如无机的晶体在溶液中生长。对于
生命,也许我们得出的最准确的说法是:所有的生命,从最简
单的细菌到人类,都进行复制并把它们的基因物质或遗传特征
传递给后代。这些物质在传递过程中经历变异。换句话说,它
们经历了自然选择的进化过程,而不是简单地产生与自身完全
相同的拷贝①。
在萨根意外地辞世之前不久,他把生命定义为“任何具有
复制、变异和变异之复制能力的系统”。这意思是说,生命是
由具有下述特征的实体来表征的:这种实体通过自然选择的进
化机制,允许代与代之间产生变异,它能把自己的特征通过繁
殖而重组,使下一代的特征与自身并不完全一模一样。
在下一章,我们会回到进化问题上进行详细的讨论,现在
则必须先对“生命”的定义进行更深入的分析(这与其说是科
学问题,不如说是语义问题更恰当)。在这里,一个尤为重要
的问题是:生命是如何在地球——一颗生机勃勃的行星上产生
的?
为了探究这个问题,我们有必要了解一下在诸如“生命如
何在早期地球上产生?在宇宙历史的不同时期这样的过程在其
他地方又会如何发生?”之类的疑问背后的几个基本概念。
所有的物质都由原子组成。自然界总共有100 多种不同的
原子,有些是非常普遍的,如氧,氮,铁和铅等;也有一些有
着奇怪名字的不太常见的物质,如铷、锿和硒等。在关于生命
的讨论中,最重要的原子是碳。在许多方面,碳原子有着和其
他原子一样的特性:它很稳定,能与其他原子或其他碳原子产
生键,从而形成小到仅有几个原子,大到含有成百万个原子的
分子。但是,它也有一个与众不同的重要特性。只有碳原子能
够成为大分子(有机分子)甚至更大的聚合物(生化物质)的
中坚。已故作家、化学家莱维(Primo Levi)在他的一部著作中
这样描述碳原子的多样性以及它与生命之间密不可分的关系:
我们的主角已
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!