ÓÑÇéÌáʾ£ºÈç¹û±¾ÍøÒ³´ò¿ªÌ«Âý»òÏÔʾ²»ÍêÕû£¬Çë³¢ÊÔÊó±êÓÒ¼ü¡°Ë¢Ð¡±±¾ÍøÒ³£¡
ºÏ×âС˵Íø ·µ»Ø±¾ÊéĿ¼ ¼ÓÈëÊéÇ© ÎÒµÄÊé¼Ü ÎÒµÄÊéÇ© TXTÈ«±¾ÏÂÔØ ¡ºÊղص½ÎÒµÄä¯ÀÀÆ÷¡»

american hand book of the daguerreotype-µÚ16²¿·Ö

¿ì½Ý²Ù×÷: °´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³ °´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ °´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿! Èç¹û±¾ÊéûÓÐÔĶÁÍ꣬ÏëÏ´μÌÐø½Ó×ÅÔĶÁ£¬¿ÉʹÓÃÉÏ·½ "Êղص½ÎÒµÄä¯ÀÀÆ÷" ¹¦ÄÜ ºÍ "¼ÓÈëÊéÇ©" ¹¦ÄÜ£¡



The¡¡reader¡¡may¡¡readily¡¡comprehend¡¡the¡¡phenomena¡¡of¡¡refraction£»¡¡by¡¡means¡¡of¡¡light¡¡passing¡¡through¡¡lenses¡¡of¡¡different¡¡curves£»¡¡by¡¡reference¡¡to¡¡the¡¡following¡¡diagrams£º

£§amdg_5¡£gif£§

Fig¡¡5¡¡represents¡¡a¡¡double¡­convex¡¡lens£»¡¡Fig¡£¡¡¡¡6¡¡a¡¡double¡­concave£»¡¡and¡¡Fig¡£¡¡7¡¡a¡¡concavo¡­convex¡¡or¡¡meniscus¡£¡¡¡¡By¡¡these¡¡it¡¡is¡¡seen¡¡that¡¡a¡¡double¡­convex¡¡lens¡¡tends¡¡to¡¡condense¡¡the¡¡rays¡¡of¡¡light¡¡to¡¡a¡¡focus£»¡¡a¡¡double¡­concave¡¡to¡¡scatter¡¡them£»¡¡and¡¡a¡¡concavo¡­convex¡¡combines¡¡both¡¡powers¡£

If¡¡parallel¡¡rays¡¡of¡¡light¡¡fall¡¡upon¡¡a¡¡double¡­convex¡¡lens£»¡¡D¡¡D£»¡¡Fig¡£¡¡8£»¡¡they¡¡will¡¡be¡¡refracted¡¡£¨excepting¡¡such¡¡as¡¡pass¡¡directly¡¡through¡¡the¡¡centre£©¡¡to¡¡a¡¡point¡¡termed¡¡the¡¡principal¡¡focus¡£

£§amdg_8a¡£gif£§

The¡¡lines¡¡A¡¡B¡¡C¡¡represent¡¡parallel¡¡rays¡¡which¡¡pass¡¡through¡¡the¡¡lens£»¡¡D¡¡D£»¡¡and¡¡meet¡¡at¡¡F£»¡¡this¡¡point¡¡being¡¡the¡¡principal¡¡focus£»¡¡its¡¡distance¡¡from¡¡the¡¡lens¡¡is¡¡called¡¡the¡¡focal¡¡length¡£¡¡Those¡¡rays¡¡of¡¡light¡¡which¡¡are¡¡traversing¡¡a¡¡parallel¡¡course£»¡¡when¡¡they¡¡enter¡¡the¡¡lens¡¡are¡¡brought¡¡to¡¡a¡¡focus¡¡nearer¡¡the¡¡lens¡¡than¡¡others¡£¡¡¡¡Hence¡¡the¡¡difficulty¡¡the¡¡operator¡¡sometimes¡¡experiences¡¡by¡¡not¡¡being¡¡able¡¡to¡¡¡¨obtain¡¡a¡¡focus£»¡¨¡¡when¡¡he¡¡wishes¡¡to¡¡secure¡¡a¡¡picture¡¡of¡¡some¡¡very¡¡distant¡¡objects£»¡¡he¡¡does¡¡not¡¡get¡¡his¡¡ground¡¡glass¡¡near¡¡enough¡¡to¡¡the¡¡lenses¡£¡¡Again£»¡¡the¡¡rays¡¡from¡¡an¡¡object¡¡near¡¡by¡¡may¡¡be¡¡termed¡¡diverging¡¡rays¡£¡¡This¡¡will¡¡be¡¡better¡¡comprehended¡¡by¡¡reference¡¡to¡¡Fig¡£¡¡9£»¡¡where¡¡it¡¡will¡¡be¡¡seen¡¡that¡¡the¡¡dotted¡¡lines£»¡¡representing

£§amdg_9¡£gif£§

parallel¡¡rays£»¡¡meet¡¡nearer¡¡the¡¡lenses¡¡than¡¡those¡¡from¡¡the¡¡point¡¡A¡£¡¡The¡¡closer¡¡the¡¡object¡¡is¡¡to¡¡the¡¡lenses£»¡¡the¡¡greater¡¡will¡¡be¡¡the¡¡divergence¡£¡¡This¡¡rule¡¡is¡¡applicable¡¡to¡¡copying¡£¡¡¡¡Did¡¡we¡¡wish¡¡to¡¡copy¡¡a¡¡1/6¡¡size¡¡Daguerreotype¡¡on¡¡a¡¡l/l6¡¡size¡¡plate£»¡¡we¡¡should¡¡place¡¡it¡¡in¡¡such¡¡a¡¡position¡¡to¡¡the¡¡lenses¡¡at¡¡A¡¡that¡¡the¡¡focus¡¡would¡¡be¡¡at¡¡F£»¡¡where¡¡the¡¡image¡¡would¡¡be¡¡represented¡¡at¡¡about¡¡the¡¡proper¡¡size¡£¡¡Now£»¡¡if¡¡we¡¡should¡¡wish¡¡to¡¡copy¡¡the¡¡1/6¡¡size¡¡picture£»¡¡and¡¡produce¡¡another¡¡of¡¡exactly¡¡the¡¡same¡¡dimensions£»¡¡we¡¡have¡¡only¡¡to¡¡bring¡¡it¡¡nearer¡¡to¡¡the¡¡lenses£»¡¡so¡¡that¡¡the¡¡lens¡¡D¡¡E¡¡shall¡¡be¡¡equi¡­distant¡¡from¡¡the¡¡picture¡¡and¡¡the¡¡focus£»¡¡i¡£¡¡¡¡e¡£¡¡¡¡from¡¡A¡¡to¡¡B¡£¡¡The¡¡reason¡¡of¡¡this¡¡is£»¡¡that¡¡the¡¡distance¡¡of¡¡the¡¡picture¡¡from¡¡the¡¡lens£»¡¡in¡¡the¡¡last¡¡copy£»¡¡is¡¡less¡¡than¡¡the¡¡other£»¡¡and¡¡the¡¡divergence¡¡has¡¡increased£»¡¡throwing£»¡¡the¡¡focus¡¡further¡¡from¡¡the¡¡lens¡£¡¨

These¡¡remarks¡¡have¡¡been¡¡introduced¡¡here¡¡as¡¡being¡¡important¡¡for¡¡those¡¡who¡¡may¡¡not¡¡understand¡¡the¡¡principles¡¡of¡¡enlarging¡¡or¡¡reducing¡¡pictures¡¡in¡¡copying¡£

I¡¡would¡¡remark¡¡that¡¡the¡¡points¡¡F¡¡and¡¡A£»¡¡in¡¡Fig¡£¡¡9£»¡¡are¡¡termed¡¡¡¨conjugate¡¡foci¡£¡¨

If¡¡we¡¡hold¡¡a¡¡double¡­convex¡¡lens¡¡opposite¡¡any¡¡object£»¡¡we¡¡find¡¡that¡¡an¡¡inverted¡¡image¡¡of¡¡that¡¡object¡¡will¡¡be¡¡formed¡¡on¡¡a¡¡paper¡¡held¡¡behind¡¡it¡£¡¡To¡¡illustrate¡¡this¡¡more¡¡clearly£»¡¡I¡¡will¡¡refer¡¡to¡¡the¡¡following¡¡woodcut£º

£§amdg_10¡£gif£§

¡¨If¡¡A¡¡B¡¡C¡¡is¡¡an¡¡object¡¡placed¡¡before¡¡a¡¡convex¡¡lens£»¡¡L¡¡L£»¡¡every¡¡point¡¡of¡¡it¡¡will¡¡send¡¡forth¡¡rays¡¡in¡¡all¡¡directions£»¡¡but£»¡¡for¡¡the¡¡sake¡¡of¡¡simplicity£»¡¡suppose¡¡only¡¡three¡¡points¡¡to¡¡give¡¡out¡¡rays£»¡¡one¡¡at¡¡the¡¡top£»¡¡one¡¡at¡¡the¡¡middle£»¡¡and¡¡one¡¡at¡¡the¡¡bottom£»¡¡the¡¡whole¡¡of¡¡the¡¡rays¡¡then¡¡that¡¡proceed¡¡from¡¡the¡¡point¡¡A£»¡¡and¡¡fall¡¡on¡¡the¡¡lens¡¡L¡¡L£»¡¡will¡¡be¡¡refracted¡¡and¡¡form¡¡an¡¡image¡¡somewhere¡¡on¡¡the¡¡line¡¡A¡¡G¡¡E£»¡¡which¡¡is¡¡drawn¡¡direct¡¡through¡¡the¡¡centre¡¡of¡¡the¡¡lens£»¡¡consequently¡¡the¡¡focus¡¡E£»¡¡produced¡¡by¡¡the¡¡convergence¡¡of¡¡the¡¡rays¡¡proceding¡¡from¡¡A£»¡¡must¡¡form¡¡an¡¡image¡¡of¡¡A£»¡¡only¡¡in¡¡a¡¡different¡¡relative¡¡position£»¡¡the¡¡middle¡¡point¡¡of¡¡C¡¡being¡¡in¡¡a¡¡direct¡¡line¡¡with¡¡the¡¡axis¡¡of¡¡the¡¡lens£»¡¡will¡¡have¡¡its¡¡image¡¡formed¡¡on¡¡the¡¡axis¡¡F£»¡¡and¡¡the¡¡rays¡¡proceeding¡¡from¡¡the¡¡point¡¡B¡¡will¡¡form¡¡an¡¡image¡¡at¡¡D£»¡¡so¡¡that¡¡by¡¡imagining¡¡luminous¡¡objects¡¡to¡¡be¡¡made¡¡up¡¡of¡¡all¡¡infinite¡¡number¡¡of¡¡radiating¡¡points¡¡and¡¡the¡¡rays¡¡from¡¡each¡¡individual¡¡point£»¡¡although¡¡falling¡¡on¡¡the¡¡whole¡¡surface¡¡of¡¡the¡¡lens£»¡¡to¡¡converge¡¡again¡¡and¡¡form¡¡a¡¡focus¡¡or¡¡representation¡¡of¡¡that¡¡point¡¡from¡¡which¡¡the¡¡rays¡¡first¡¡emerged£»¡¡it¡¡will¡¡be¡¡very¡¡easy¡¡to¡¡comprehend¡¡how¡¡images¡¡are¡¡formed£»¡¡and¡¡the¡¡cause¡¡of¡¡those¡¡images¡¡being¡¡reversed¡£

¡¨It¡¡must¡¡also¡¡be¡¡evident£»¡¡that¡¡in¡¡the¡¡two¡¡triangles¡¡A¡¡G¡¡B¡¡and¡¡D¡¡G¡¡E£»¡¡that¡¡E¡¡D£»¡¡the¡¡length¡¡of¡¡the¡¡image£»¡¡must¡¡be¡¡to¡¡A¡¡B£»¡¡the¡¡length¡¡of¡¡the¡¡object£»¡¡as¡¡G¡¡D£»¡¡the¡¡distance¡¡of¡¡the¡¡image£»¡¡is¡¡to¡¡G¡¡B£»¡¡the¡¡distance¡¡of¡¡the¡¡object¡¡from¡¡the¡¡lens¡£

It¡¡will¡¡be¡¡observed¡¡that¡¡in¡¡the¡¡last¡¡cut¡¡the¡¡image¡¡produced¡¡by¡¡the¡¡lens¡¡is¡¡curved¡£¡¡¡¡Now£»¡¡it¡¡would¡¡be¡¡impossible¡¡to¡¡produce¡¡a¡¡well¡­defined¡¡image¡¡from¡¡the¡¡centre¡¡to¡¡the¡¡edge¡¡upon¡¡a¡¡plain¡¡surface£»¡¡the¡¡outer¡¡edges¡¡would¡¡be¡¡misty£»¡¡indistinct£»¡¡or¡¡crayon¡­like¡£¡¡The¡¡centre¡¡of¡¡the¡¡image¡¡might¡¡be¡¡represented¡¡clear¡¡and¡¡sharp¡¡on¡¡the¡¡ground¡¡glass£»¡¡yet¡¡this¡¡would¡¡be¡¡far¡¡from¡¡the¡¡case¡¡in¡¡regard¡¡to¡¡the¡¡outer¡¡portions¡£¡¡¡¡This¡¡is¡¡called¡¡spherical¡¡aberration£»¡¡and¡¡to¡¡it¡¡is¡¡due¡¡the¡¡want¡¡of¡¡distinctness¡¡which¡¡is¡¡frequently¡¡noticed¡¡around¡¡the¡¡edges¡¡of¡¡pictures¡¡taken¡¡in¡¡the¡¡camera¡£¡¡To¡¡secure¡¡a¡¡camera¡¡with¡¡a¡¡flat£»¡¡sharp£»¡¡field£»¡¡should¡¡be¡¡the¡¡object¡¡of¡¡every¡¡operator£»¡¡and£»¡¡in¡¡a¡¡measure£»¡¡this¡¡constitutes¡¡the¡¡great¡¡difference¡¡in¡¡cameras¡¡manufactured¡¡in¡¡this¡¡country¡£

Spherical¡¡aberration¡¡is¡¡overcome¡¡by¡¡proper¡¡care¡¡in¡¡the¡¡formation¡¡of¡¡the¡¡lens£º¡¡¡¨It¡¡can¡¡be¡¡shown¡¡upon¡¡mathematical¡¡data¡¡that¡¡a¡¡lens¡¡similar¡¡to¡¡that¡¡given¡¡in¡¡the¡¡following¡¡diagramone¡¡surface¡¡of¡¡which¡¡is¡¡a¡¡section¡¡of¡¡an¡¡ellipse£»¡¡and¡¡the¡¡other¡¡of¡¡a¡¡circle¡¡struck¡¡from¡¡the¡¡furthest¡¡of¡¡the¡¡two¡¡foci¡¡of¡¡that¡¡ellipseproduces¡¡no¡¡aberration¡£

¡¨At¡¡the¡¡earliest¡¡period¡¡of¡¡the¡¡employment¡¡of¡¡the¡¡camera¡¡obscura£»¡¡a¡¡double¡­convex¡¡lens¡¡was¡¡used¡¡to¡¡produce¡¡the¡¡image£»¡¡but¡¡this¡¡form¡¡was¡¡soon¡¡abandoned£»¡¡on¡¡account¡¡of¡¡the¡¡spherical¡¡aberration¡¡so¡¡caused¡£¡¡Lenses¡¡for¡¡the¡¡photographic¡¡camera¡¡are¡¡now¡¡always¡¡ground¡¡of¡¡a¡¡concavo¡­convex¡¡form£»

£§amdg_11¡£gif£§

or¡¡meniscus£»¡¡which¡¡corresponds¡¡more¡¡nearly¡¡to¡¡the¡¡accompanying¡¡diagram¡£¡¨

Chromatic¡¡Aberration¡¡is¡¡another¡¡difficulty¡¡that¡¡opticians¡¡have¡¡to¡¡contend¡¡with¡¡in¡¡the¡¡manufacturing¡¡of¡¡lenses¡£¡¡¡¡It¡¡will¡¡be¡¡remembered£»¡¡that¡¡in¡¡a¡¡former¡¡page¡¡£¨133£©¡¡a¡¡beam¡¡of¡¡light¡¡is¡¡decomposed¡¡by¡¡passing¡¡through¡¡a¡¡glass¡¡prism¡¡giving¡¡seven¡¡distinct¡¡colorsred£»¡¡orange£»¡¡yellow£»¡¡green£»¡¡blue£»¡¡indigo¡¡and¡¡violet¡£

Now£»¡¡as¡¡has¡¡been¡¡said¡¡before£»¡¡the¡¡dissimilar¡¡rays¡¡having¡¡an¡¡unequal¡¡degree¡¡of¡¡refrangibility£»¡¡it¡¡will¡¡be¡¡impossible¡¡to¡¡obtain¡¡a¡¡focus¡¡by¡¡the¡¡light¡¡passing¡¡through¡¡a¡¡double¡­convex¡¡lens¡¡without¡¡its¡¡being¡¡fringed¡¡with¡¡color¡£¡¡Its¡¡effect¡¡will¡¡be¡¡readily¡¡understood¡¡by¡¡reference¡¡to¡¡the¡¡accompanying¡¡cut¡£

If¡¡L¡¡L¡¡be¡¡a¡¡double¡¡convex¡­lens£»¡¡and¡¡R¡¡R¡¡R¡¡parallel¡¡rays¡¡of¡¡white¡¡light£»¡¡composed¡¡of¡¡the¡¡seven¡¡colored¡¡rays£»

£§amdg_8b¡£gif£§

each¡¡having¡¡a¡¡different¡¡index¡¡of¡¡refraction£»¡¡they¡¡cannot¡¡be¡¡refracted¡¡to¡¡one¡¡and¡¡the¡¡same¡¡point£»¡¡the¡¡red¡¡rays£»¡¡being¡¡the¡¡least¡¡refrangible£»¡¡will¡¡be¡¡bent¡¡to¡¡r£»¡¡and¡¡the¡¡violet¡¡rays£»¡¡being¡¡the¡¡most¡¡refrangible£»¡¡to¡¡v£º¡¡the¡¡distance¡¡v¡¡r¡¡constitutes¡¡the¡¡chromatic¡¡aberration£»¡¡and¡¡the¡¡circle£»¡¡of¡¡which¡¡the¡¡diameter¡¡is¡¡a¡¡l£»¡¡the¡¡place¡¡or¡¡point¡¡of¡¡mean¡¡refraction£»¡¡and¡¡is¡¡called¡¡the¡¡circle¡¡of¡¡least¡¡aberration¡£¡¡¡¡If¡¡the¡¡rays¡¡of¡¡the¡¡sun¡¡are¡¡refracted¡¡by¡¡means¡¡of¡¡a¡¡lens£»¡¡and¡¡the¡¡image¡¡received¡¡on¡¡a¡¡screen¡¡placed¡¡between¡¡C¡¡and¡¡o£»¡¡so¡¡as¡¡to¡¡cut¡¡the¡¡cone¡¡L¡¡a¡¡l¡¡L£»¡¡a¡¡luminous¡¡circle¡¡will¡¡be¡¡formed¡¡on¡¡the¡¡paper£»¡¡only¡¡surrounded¡¡by¡¡a¡¡red¡¡border£»¡¡because¡¡it¡¡is¡¡produced¡¡by¡¡a¡¡section¡¡of¡¡the¡¡cone¡¡L¡¡a¡¡l¡¡L£»¡¡of¡¡which¡¡the¡¡external¡¡rays¡¡L¡¡a¡¡L¡¡l£»¡¡are¡¡red£»¡¡if¡¡the¡¡screen¡¡be¡¡moved¡¡to¡¡the¡¡other¡¡side¡¡of¡¡o£»¡¡the¡¡luminous¡¡circle¡¡will¡¡be¡¡bordered¡¡with¡¡violet£»¡¡because¡¡it¡¡will¡¡be¡¡a¡¡section¡¡of¡¡the¡¡cone¡¡M¡¡a¡¡M¡¡l£»¡¡of¡¡which¡¡the¡¡exterior¡¡rays¡¡are¡¡violet¡£¡¡To¡¡avoid¡¡the¡¡influence¡¡of¡¡spherical¡¡aberration£»¡¡and¡¡to¡¡render¡¡the¡¡phenomena¡¡of¡¡coloration¡¡more¡¡evident£»¡¡let¡¡an¡¡opaque¡¡disc¡¡be¡¡placed¡¡over¡¡the¡¡central¡¡portion¡¡of¡¡the¡¡lens£»¡¡so¡¡as¡¡to¡¡allow¡¡the¡¡rays¡¡only¡¡to¡¡pass¡¡which¡¡are¡¡at¡¡the¡¡edge¡¡of¡¡the¡¡glass£»¡¡a¡¡violet¡¡image¡¡of¡¡the¡¡sun¡¡will¡¡then¡¡be¡¡seen¡¡at¡¡v£»¡¡red¡¡at¡¡r£»¡¡and£»¡¡finally£»¡¡images¡¡of¡¡all¡¡the¡¡colors¡¡of¡¡the¡¡spectrum¡¡in¡¡the¡¡intermediate¡¡space£»¡¡consequently£»¡¡the¡¡general¡¡image¡¡will¡¡not¡¡only¡¡be¡¡confused£»¡¡but¡¡clothed¡¡with¡¡prismatic¡¡colors¡£¡¨

To¡¡overcome¡¡the¡¡difficulty¡¡arising¡¡from¡¡the¡¡chromatic¡¡aberration£»¡¡the¡¡optician¡¡has¡¡only¡¡to¡¡employ¡¡a¡¡combination¡¡of¡¡lenses¡¡of¡¡opposite¡¡focal¡¡length£»¡¡and¡¡cut¡¡from¡¡glass¡¡possessing¡¡different¡¡refrangible¡¡powers£»¡¡so¡¡that¡¡the¡¡rays¡¡of¡¡light¡¡passing¡¡through¡¡the¡¡one¡¡are¡¡strongly¡¡refracted£»¡¡and¡¡in¡¡the¡¡other¡¡are¡¡bent¡¡asunder¡¡again£»¡¡reproducing¡¡white¡¡light¡£

To¡¡the¡¡photographer¡¡one¡¡of¡¡the¡¡most¡¡important¡¡features£»¡¡requiring¡¡his¡¡particular¡¡attention¡£¡¡¡¡is£»¡¡that¡¡he¡¡be¡¡provided¡¡with¡¡a¡¡good¡¡lens¡£¡¡By¡¡the¡¡remarks¡¡given¡¡in¡¡the¡¡preceding¡¡pages£»¡¡he¡¡will¡¡be¡¡enabled£»¡¡in¡¡a¡¡measure£»¡¡to¡¡judge¡¡of¡¡some¡¡of¡¡the¡¡difficulties¡¡to¡¡which¡¡he¡¡is¡¡occasionally¡¡subjected¡£¡¡We¡¡have¡¡in¡¡this¡¡country¡¡but¡¡two¡¡or¡¡three¡¡individuals¡¡who¡¡are¡¡giving¡¡their¡¡attention¡¡to¡¡the¡¡manufacture¡¡of¡¡lenses£»¡¡and¡¡their¡¡construction¡¡is¡¡such£»¡¡that¡¡they¡¡are¡¡quite¡¡free¡¡from¡¡the¡¡spherical¡¡or¡¡chromatic¡¡aberration¡£



CHAPTER¡¡V¡£

To¡¡make¡¡Plates¡¡for¡¡the¡¡DaguerreotypeDetermining¡¡the¡¡Time¡¡of¡¡Exposure¡¡in¡¡the¡¡CameraInstantaneous¡¡Process¡¡for¡¡Producing¡¡Daguerreotype¡¡Galvanizing¡¡the¡¡Daguerreotype¡¡PlateSilvering¡¡Solution¡¡Daguerreotype¡¡without¡¡MercuryManagement¡¡of¡¡Chemicals¡¡Hints¡¡and¡¡CautionsElectrotypingCrayon¡¡Daguerreotypes¡¡Illuminated¡¡DaguerreotypesNatural¡¡Colors¡¡in¡¡Heliography¡¡Multiplying¡¡Daguerreotypes¡¡on¡¡one¡¡PlateDeposit¡¡in¡¡Gilding¡¡Practical¡¡Hints¡¡on¡¡the¡¡Daguerreotype¡£


TO¡¡MAKE¡¡PLATES¡¡FOR¡¡THE¡¡DAGUERREOTYPE¡£

I¡¡do¡¡not¡¡give¡¡the¡¡method¡¡employed¡¡by¡¡our¡¡regular¡¡plate¡¡manufacturers£»¡¡this¡¡is¡¡not¡¡important£»¡¡as¡¡the¡¡operator¡¡could¡¡not¡¡possibly¡¡profit¡¡by¡¡it¡¡from¡¡the¡¡fact¡¡of¡¡the¡¡great¡¡expense¡¡of¡¡manufacturing¡£¡¡The¡¡following¡¡will¡¡be¡¡found¡¡practical£º

Procure¡¡a¡¡well¡¡planished¡¡copper¡¡plate¡¡of¡¡the¡¡required¡¡size£»¡¡and¡¡well¡¡polish¡¡it£»¡¡first¡¡with¡¡pumice¡¡stone¡¡and¡¡water£»¡¡then¡¡with¡¡snake¡¡stone£»¡¡jewelers'¡¡rouge¡£¡¡¡¡Plates¡¡can¡¡be¡¡purchased¡¡in¡¡a¡¡high¡¡state¡¡of¡¡preparation¡¡from¡¡the¡¡engravers¡£¡¡Having¡¡prepared¡¡the¡¡copper¡­plate£»¡¡well¡¡rub¡¡it¡¡with¡¡salt¡¡and¡¡water£»¡¡and¡¡then¡¡with¡¡the¡¡silvering¡¡powder¡£¡¡¡¡No¡¡kind¡¡answers¡¡better¡¡than¡¡that¡¡used¡¡by¡¡clock¡­makers¡¡to¡¡silver¡¡their¡¡dial¡­plates¡£¡¡It¡¡is¡¡composed¡¡of¡¡one¡¡part¡¡of¡¡well¡¡washed¡¡chloride¡¡of¡¡silver£»¡¡five¡¡parts¡¡of¡¡cream¡¡of¡¡tartar£»¡¡and¡¡four¡¡parts¡¡of¡¡table¡¡salt¡£¡¡This¡¡powder¡¡must¡¡be¡¡kept¡¡in¡¡a¡¡dark¡¡vessel£»¡¡and¡¡in¡¡a¡¡dry¡¡place¡£¡¡For¡¡a¡¡plate¡¡six¡¡inches¡¡by¡¡five£»¡¡as¡¡much¡¡of¡¡this¡¡composition¡¡as¡¡can¡¡be¡¡taken¡¡up¡¡on¡¡a¡¡shilling¡¡is¡¡sufficient¡£¡¡It¡¡is¡¡to¡¡be¡¡laid¡¡in¡¡the¡¡centre¡¡of¡¡the¡¡copper£»¡¡and¡¡the¡¡figures¡¡being¡¡wetted£»¡¡to¡¡be¡¡quickly¡¡rubbed¡¡over¡¡every¡¡part¡¡of¡¡the¡¡plate£»¡¡adding¡¡occasionally¡¡a¡¡little¡¡damp¡¡salt¡£¡¡The¡¡copper¡¡being¡¡covered¡¡with¡¡the¡¡silvering¡¡is¡¡to¡¡be¡¡speedily¡¡well¡¡washed¡¡in¡¡water£»¡¡in¡¡which¡¡a¡¡little¡¡soda¡¡is¡¡diss
·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©
¿ì½Ý²Ù×÷: °´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³ °´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ °´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿!
ÎÂÜ°Ìáʾ£º ο´Ð¡ËµµÄͬʱ·¢±íÆÀÂÛ£¬Ëµ³ö×Ô¼ºµÄ¿´·¨ºÍÆäËüС»ï°éÃÇ·ÖÏíÒ²²»´íŶ£¡·¢±íÊéÆÀ»¹¿ÉÒÔ»ñµÃ»ý·ÖºÍ¾­Ñé½±Àø£¬ÈÏÕæдԭ´´ÊéÆÀ ±»²ÉÄÉΪ¾«ÆÀ¿ÉÒÔ»ñµÃ´óÁ¿½ð±Ò¡¢»ý·ÖºÍ¾­Ñé½±ÀøŶ£¡