友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
合租小说网 返回本书目录 加入书签 我的书架 我的书签 TXT全本下载 『收藏到我的浏览器』

16旧唐书(上)-第109部分

快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!


者,半入馀,乘率差,亦以大衍通法除之,为加时转率。乃半之,以损益加时所入,馀为转馀。其转馀,应益者,减法;应损者,因馀。皆以乘率差,盈大衍通法得一,加于通率。转率乘之,大衍通法约之,以朓减朒加转率为定率。乃以定率损益朓朒积为定数。其后无同率者,亦因前率,益者以通率为初数,半率差而减之。应通率,其损益入馀,进退日者,分为二日,随馀初末如法求之,所得并以损益转率。此术本出《皇极历》,以究算术之微变。若非朔望有交者,直以入馀乘损益,如大衍通法而一,以损益朓朒为定数,各得所求。  
  七日初:二千七百一,约为大分八。末:三百三十九,约为大分一。  
  十四日初:二千三百六十三,约为大分七。末:六百七十七,约为大分二。  
  二十一日初:二千二十四,约为大分六。末:一千一十六,约为大分三。  
  二十八日初:一千六百八十六,约为大分五。末:一千三百五十四,约为大分四。  
  右以四象约转终日及馀,均得六日二千七百一分。就全数约为大分,是为之八分。以减法,馀为末数。乃四象驯变相加,各其所当之日初末数也。视入转馀,如初数以下者,加减损益,因循前率;如初数以上,则反其衰,归于后率云。  
  求朔弦望定日及馀 以入气、入转朓朒定数,同名相从,异名相消。乃以朓减朒加四象经小馀。满若不足,进大馀。命以甲子算外,各其定日及小馀。干名与后朔叶同者,月大。不同者,小;无中气者,为闰月。凡言夜半者,皆起晨前子正之中。若注历观弦望定小馀,不盈晨初馀数者,退一日。其望,小馀虽满此数,若有交蚀,亏初起在晨初已前者,亦如之。又月行九道迟疾,则三大二小。以日行盈缩,累增损之,则容有四大三小,理数然也。若俯循常仪,当察加时早晚,随其所近而进退之,使不过三小。其正月朔,若有交加时正见者,消息前后一两月,以定大小,令亏在晦二。  
  推定朔弦望夜半日所在度 各随定气次日以所直日度及馀分命焉。若以五星相加减者,以四约度馀。乃列朔弦望小馀,副之,以乘其日盈缩分,如大衍通法而一,盈加缩减其副,以加其日夜半度馀,命如前,各其日加时日躔所次。  
  推月九道度 凡合朔所交,冬在阴历,夏在阳历,月行青道。冬、夏至后,青道半交在春分之宿,殷黄道东。立冬、夏后,青道半交在立春之宿,殷黄道东南。至所冲之宿亦如之也。冬在阳历,夏在阴历,月行白道。冬至夏至后,白道半交在秋分之宿,殷黄道西。立北。至所冲之宿亦如之也。春在阳历,秋在阴历,月行硃道。春、秋分后,硃道半交在夏至之宿,殷黄道南。立春立秋后,硃道半交在立夏之宿,殷黄道西南。至所冲之宿亦如之也。春在阴历,秋在阳历,月行黑道。春、秋分后,黑道半交在冬至之宿,殷黄道北。立春立秋后,黑道半交在立冬之宿,殷黄道东北。至所冲之宿亦如之也。四序离为八节,至阴阳之始交,皆以黄道相会,故月有九行。各视月交所入七十二候,距交初黄道日每五度为限。交初交中同。亦初数十二,每限减一,数终于四,乃一度强,依平。更从四起,每限增一,终于十二,而至半交,其去黄道六度。又自十二,每限减一,数终于四,亦一度强,依平。更从四起,每限增一,终于十二,复与日轨相会。各累计其数,以乘限度,二百四十而一,得度。不满者,二十四除,为分。若以二十除之,则大分。十二为母,命以半太及强弱也。为月行与黄道差数。距半交前后各九限,以差数为减;距正交前后各九限,以差数为加。此加减是出入六度,单与黄道相交之数也。若交赤道,则随气迁变不恆。计去冬至夏至以来候数,乘黄道所差,十八而一,为月行与赤道差数。凡日以赤道内为阴,赤道外为阳;月以黄道内为阴,黄道外为阳。故月行宿度入春分交后行阴历,秋分交后行阳历,皆为同名;若入春分交后行阳历,秋分交后行阴历,皆为异名。其在同名,以差数为加者加之,减者减之;若在异名,以差数为加者减之,减者加之。皆以增损黄道度为九道定数。  
  推月九道平交入气 各以其月恆中气,去经朔日算及馀秒,加其月经朔加时入交泛日及馀秒,乃以减交终日及馀秒,其馀即各平交入其月恆中气日算及馀秒也。满三元之策及馀秒则去之,其馀即平交入后月恆节气日算及馀秒。因求次交者,以交终日及馀秒加之。满三元之策及馀秒,去之。不满者,为平交入其气日算及馀秒。各以其气初先后数先加、后减其入馀。满若不足,进退日算,即平交入定气日算及馀秒也。  
  求平交入气朓朒定数 置所入定气日算,倍六爻乘之,三其小馀,辰法除而从之,以乘其气损益率,如定气辰数而一,所得以损益其气朓朒积为定数也。  
  求平交入转朓朒定数 置所入定气馀,加其日夜半入转馀,以乘其日损益率,满大衍通法而一,所得以损益其日朓朒积,乃以交率乘之,交数而一,为定数。  
  求正交入气 置平交入气及入转朓朒定数,同名相从,异名相消。乃以朓减、朒加平交入气馀,满若不足,进退日算,即为正交入定气日算及馀也。  
  求正交加时黄道宿度 置正交入定气馀,副之,乘其日盈缩分,满大衍通法而一,所得以盈加缩减其副,以加其日夜半日度,即正交加时所在黄度及馀也。  
  求正交加时月离九道宿度 以正交加时度馀,减大衍通法。馀以正交之宿距度所入限数乘之,为距前分。置距度下月道与黄道差,以大衍通法乘之,减去距前分,馀满二百四十除,为定差。不满者,一退为秒。以定差及秒加黄道度,馀,仍计去冬至夏至以来候数,乘定差,十八而一,所得依名同异而加减之,满若不足,进退其度,命如前,即正交加时月离所在九道宿度及馀也。  
  推定朔弦望加时月所在度 各置其日加时日躔所在,变从九道,循次相加。凡合朔加时月行潜在日下,与太阳同度,是为离象。凡置朔弦望加时黄道日度,以正交加时所在黄道宿度减之,馀以加其正交九道宿度,命起正交宿度算外,即朔弦望加时所当九道宿度也。其合朔加时若非正交,则日在黄道,月在九道,各入宿度,虽多少不同,考其去极,若应准绳,故云月行潜在日下,与太阳同度。  
  以一象之度九十一、馀九百五十四、秒二十二半为上弦,兑象。倍之而与日冲,得望,坎象。参之,得下弦,震象。各以加其所当九道宿度,秒盈象统从馀,馀满大衍通法从度。命如前,各其日加时月所在度及馀秒也。综五位成数四十,以约度馀,为分。不尽者,因为小分也。  
  推定朔夜半入转 恆视经朔夜半所入,若定朔大馀有进退者,亦加减转日,否则因经朔为定。径求次定朔夜半入转,因前定朔夜半所入,大月加转差日二,小月加日一,转馀皆一千三百五十四秒分一。数除如前,即次月定朔夜半所入。  
  求次日 累加一日,去命如,各其夜半所入转日及馀秒。  
  求每日月转定度 各以夜半入转馀,乘列衰,如大衍通法而一,所得以进加退减其日转分,为月每所转定分,满转法为度也。  
  求朔弦望定日前夜半月所在度 各半列衰,减转分。退者,定馀乘衰,以大衍通法除,并衰而半之;进者,半定馀乘衰,定以大衍通法除,皆加所减。乃以定馀乘之,盈大衍通法得一,以减加时月度及分。因夜半准此求转分以加之,亦得加时月度。若非朔望有交,直以定小馀乘所入日转交分,如大衍通法而一,以减其日时月度,亦得所求。  
  求次日夜半月度 各以其日转定分加之,分满转法从度,命如前,即次日夜半月所在度及分。  
  推月晨昏度 各以所入转定分乘其日夜漏,倍百刻除,为晨分。以减转定分,馀为昏分。分满转法,从度。以加夜半度,望前以昏加,望后以晨加。各得其日晨昏月所在度及分。  
  大衍步轨漏第五  
  爻统:一千五百二十。  
  象积:四百八十。  
  辰刻:八;刻分,一百六十。  
  昏明刻:各二;刻分,二百四十。  
  求每日消息定衰 各置其气消息衰,依定气日数,每日以陟降率陟减降加其分,满百从衰,不满为分。各得每日消息定衰及分。其距二分前后各一气之外,陟降不等,各每以三日为一限,损益如后。  
  雨水初日:降七十八。初限每日损十二,次限每日损八,次限每日损三,次限每日损二,末限每日损一。  
  清明初日:陟一。初限每日益一,次限每日益二,次限每日益三,次限每日益八,末限每日益十九。  
  处暑初日:降九十九。初限每日损十九,次限每日损八,次限每日损三,次限每日损二,末限每日损一。  
  寒露初日:陟一。初限每日益一,次限每日益二,次限每日益三,次限每日益八,末限每日益十二。  
  求前件四气 置初日陟降率,每日依限次损益之,各为每日率。乃递以陟减降加其气初日消息衰分,亦得每日定衰及分也。  
  推戴日之北每度晷数 南方戴日之下,正中无晷。自戴日之北一度,乃初数一千三百七十九。从此起差,每度增一,终于二十五度。又每度增二,终于四十度。又每度增六,终于四十四度,增六十八。每度增二,终于五十五度。又每度增十九,终于六十度,度增一百六十。又每度增三十三,终于六十五度。又每度增三十六,终于七十度。又每度增三十九,终于七十二度,增二百六十。又度增四百四十,又度增一千六十,又度增一千八百六十,又度增二千八百四十,又度增四千,又度增五千三百四十,而各为每度差。因累其差以递加初数,满百为分,分满十为寸,各为每度晷差。又每度晷差数。  
  求阳城日晷每日中常数 各置其气去极度,以极去戴日下度五十六,盈分八十二减半之,各得戴日之北度数及分。各以其消息定衰戴日北所直度分之晷差,满百为分,分满十为寸,各为每日晷差。乃递以息减消加其气初晷数,得每日中晷常数也。  
  求每日中晷定数 各置其日所在气定小馀,以爻统减之,馀为中后分。置前后分,以其日晷差乘之,如大衍通法而一,为变差。乃以变差加减其日中晷常数,冬至后,中前以差减,中后以差加。夏至后,中前以差加,中后以差减。冬至一日有减无加,夏至一日有加无减。各得每日中晷定数。  
  求每日夜半漏定数 置消息定衰,满象积为刻,不满为分。各递以息减消加其气初夜半漏,各得每日夜半漏定数。  
  求晨初馀数 置夜半定漏全刻,以九千一百二十乘之,十九乘刻分从之,如三百而一,所得为晨初馀数,不尽为小分。  
  求每日昼夜漏及日出入所在辰刻 各倍夜半之漏,为夜刻。以减百刻,馀为昼刻。减昼五刻以加夜,即昼为见刻,夜为没刻。半没刻以半辰刻加之,命起子初刻算外,即日出辰刻。以见刻加之,命如前,即日入辰刻。置夜刻以五除之,得每更差刻,又五除之,得每筹差刻。以昏刻加日入辰刻,得甲夜初刻。又以更筹差加之,得次更一筹之数。以次累加,满辰刻去之,命如前,即得五夜更筹所当辰及分也。其夜半定漏,亦名晨初夜刻。  
  求每日黄道去极定数 置消息定衰,满百为度,不满为分,各递以息减消加其气初去极度,各得每日去极定数。  
  求每日距中度定数 置消息定衰,以一万二千三百八十六乘之,如一万六千二百七十七而一,为每日度差。差满百为度,不满为分。各递以息加消减其气初距中度,各得每日距中度定数。倍距中度以减周天度,五而一,所得为每更度差。  
  求每日昏明及每更中宿度所临 置其日所在赤道宿度,以距中度加之,命宿次如前,即得其日昏中所临宿度。以每更差度加之,命如前,即乙夜初中所临宿度及分也。  
  求九服所在每气初日中晷常数 置气去极度数相减,各为生气消息定数,因测所在冬夏至日晷长短,但测至即得,不必要须冬至。于其戴日之北度及分晷数中,校取长短,同者便为所在戴日北度数及分。气各以消定数加减之,因冬至后者每气以减,因夏至后者每气以加。各得每气戴日北度数及分。各因其气所直度分之晷数长短,即各为所在每定气初日中晷常数。其测晷有在表南者,亦据其晷尺寸长短,与戴日北每度晷数同者,因取其所直之度,去戴日北度数,反之,为去戴日南度,然后以消息定数加减。  
  求九服所在昼夜漏刻 冬夏至各于所在下水漏,以定当处昼夜刻数。乃相减,为冬夏至差刻。半之,以加减二至昼夜刻数,加夏至、减冬至。为春秋分定日昼夜刻数。乃置每气消息定数,以当处二至差刻数乘之,如二至去极差度四十七分,八十而一,所得依分前后加减二分初日昼夜漏刻,春分前秋分后,加夜减昼;春分后秋分前,加昼减夜。各得所在定气初日昼夜漏刻数。求次日者,置每日消息定衰,亦以差刻乘之,差度而一,所得以息减消加其气初漏刻,各得所求。其求距中度及昏明中宿日出入所在,皆依阳城法求,仍以差度而今有之,即得也。  
  又术 置所在春秋分定日中晷常数,与阳城每日晷数校取同者,因其日夜半漏,即为所在定春秋分初日夜半漏。求馀气定日,每以消息定数,依分前后加减刻分。春分前以加,分后以减;秋分前以减,分后以加。满象积为刻,不满为分,各为所在定气初日夜半定漏。  
  求次日 以消息定衰依阳城法求之,即得。此术究理,大体合通。但高山平川,视日不等。校其日晷,长短乃同。考其日漏,多少悬别。以兹参课,前术为审也。  
  大衍步交会术第六  
  交终:八亿二千七百二十五万一千三百
返回目录 上一页 下一页 回到顶部 0 0
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!