友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
生活中的博弈论-第5部分
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!
人去抓兔子,会抓住4只兔子。从维持生存的角度来看,4只兔子可以供一个人吃4天,1只梅花鹿如果被抓住将被两个猎人平分,可供每人吃10天。这里不妨假设两个猎人叫A和B。
在这个矩阵图中,每一个格子都代表一种博弈的结果。具体说来:
1.左上角的格子表示,猎人A和B都抓兔子,结果是猎人A和B都能吃饱4天;
2.左下角的格子表示,猎人A抓兔子,猎人B打梅花鹿,结果是猎人A可以吃饱4天,B则一无所获;
3.在右上角,猎人A打梅花鹿,猎人B抓兔子,结果是猎人A一无所获,猎人B可以吃饱4天;
4.在右下角,猎人A和B合作抓捕梅花鹿,结果是两人平分猎物,都可以吃饱10天。
在这个博弈中,根据纳什均衡的定义,应用博弈论中的“严格劣势删除法”(有兴趣的读者可以找本书参考文献中的相关书籍阅读,这里不做详细介绍。)可以得到该博弈有两个纳什均衡点,那就是:要么分别打兔子,每人吃饱4天;要么合作,每人吃饱10天。
两个纳什均衡,就是两个可能的结局。两种结局到底哪一个最终发生,这无法用纳什均衡本身来确定。
比较'10,10'和'4,4'两个纳什均衡,明显的事实是,两人一起去猎梅花鹿比各自去抓兔子可以让每个人多吃6天。按照经济学的说法,合作猎鹿的纳什均衡,分头抓打兔子的纳什均衡,具有帕累托优势。与'4,4'相比,'10,10'不仅有整体福利改进,而且每个人都得到福利改进。
换一种更加严密的说法就是,'10,10'与'4,4'相比,其中一方收益增大,而其它各方的境况都不受损害。这就是'10,10'对于'4,4'具有帕累托优势的含义。
在经济学中,帕累托效率准则是:经济的效率体现于配置社会资源以改善人们的境况,主要看资源是否已经被充分利用。如果资源已经被充分利用,要想再改善我就必须损害你或别的什么人,要想再改善你就必须损害另外某个人。
一句话简单概括,要想再改善任何人都必须损害别的人了,这时候就说一个经济已经实现了帕累托效率。
相反,如果还可以在不损害别人的情况下改善任何人,就认为经济资源尚未充分利用,就不能说已经达到帕累托效率。效率是指资源配置已达到这样一种境地,即任何重新改变资源配置的方式,都不可能使一部分人在没有其他人受损的情况下受益。这一资源配置的状态,被称为“帕累托最优”(Pareto optimum)状态,或称为“帕累托有效”(Pareto efficient)。
目前在世界上比比皆是的企业强强联合,就接近于猎鹿模型的帕累托改善,跨国汽车公司的联合、日本两大银行的联合等等均属此列,这种强强联合造成的结果是资金雄厚、生产技术先进、在世界上占有的竞争地位更优越,发挥的影响更显著。
总之,他们将蛋糕做得越大,双方的效益也就越高。比如宝山钢铁公司与上海钢铁集团强强联合也好,还是其他什么重组方式;最重要的在于将蛋糕做大。在宝钢与上钢的强强联合中,宝钢有着资金、效益、管理水平、规模等各方面的优势,上钢也有着生产技术与经验的优势。两个公司实施强强联合,充分发挥各方的优势,发掘更多更大的潜力,形成一个更大更有力的拳头,将蛋糕做得比原先两个蛋糕之和还要大。
猎鹿模型的讨论,我们的思路实际只停留在考虑整体效率最高这个角度,而没有考虑蛋糕做大之后的分配。猎鹿模型是假设猎人双方平均分配猎物。
我们不妨做这样一种假设,猎人A比猎人B狩猎的能力水平要略高一筹,但B猎人却是酋长之子,拥有较高的分配权。
可以设想,A猎人与B猎人合作猎鹿之后的分配不是两人平分成果,而是A猎人仅分到了够吃2天的梅花鹿肉,B猎人却分到了够吃18天的梅花鹿肉。
在这种情况下,整体效率虽然提高,但却不是帕累托改善,因为整体的改善反而伤害到猎人A的利益。我们假想,具有特权的猎人B会通过各种手段方法让猎人A乖乖就范。但是猎人A的狩猎热情遭到伤害,这必然会导致整体效率的下降。进一步推测,如果不是两个人进行狩猎,而是多人狩猎博弈,根据分配可以分成既得利益集团与弱势群体,这和我国的现状非常相似。
我国改革的进程在九十年代中期以前是一种帕累托改善的过程。但是随着各种复杂的不确定因素影响,贫富差距逐渐拉大,基尼指数甚至超过0。45的国际警戒线,帕累托改善的过程受到干扰。
这种情况如果继续下去,社会稳定和改革深化必将受到决定性的冲击。我们的党和政府已经关注到弱势群体的生存状态,并适时地提出建设和谐社会的改革目标,纠正了一些错误思潮,将改革的进程拉回到健康的轨道。
“囚徒困境”的深刻哲理
在博弈论中,有一个流传颇为广泛的故事,叫做“囚徒困境”(Pris…oner's Dilemma)。
话说有一天,一位富翁在家中被杀,财物被盗。警方在此案的侦破过程中,抓到两个犯罪嫌疑人A和B,并从他们的住处搜出被害人家中丢失的财物。但是,他们都矢口否认曾杀过人,辩称是先发现富翁被杀,然后只是顺手牵羊偷了点儿东西。于是警方将两人隔离审讯。
这个时候,聪明的警官找他们谈话,分别告诉他们说:“你们的偷盗罪确凿,所以可以判你们2年刑期。但是,我可以和你做个交易。如果你招了,他不招,那么你会作为证人无罪释放,他将被判10年徒刑;如果你招了,他也招了,你们都将被判5年有期徒刑;如果他招了,你不招,他无罪释放,你被判无期徒刑,终身囚禁;如果你们都不招,各判2年。”
一般读者可能会误认为,既然两个囚犯最好的结果是都不招供,两人都只被判2年,那么,两个囚犯都选择不招供就是这个博弈的最终结果。
然而,人算不如天算,“囚徒困境”之所以称为“困境”正是因为这个博弈的最终结局恰恰是最坏的结果,即两个囚犯统统招供,结果都被判有期徒刑5年。
反过来说,这也是警官的聪明之处。警官采取的游戏规则必然会让两名囚犯坦白罪行,认罪伏法。对一个博弈来说,游戏规则非常地重要,适宜的规则才能够达到目的。在我们的日常生活中莫不如此,规则制订者往往利用条件制定出有利于自身的规章制度。
读到这里,很多读者不禁会问,为什么两个人都选择了“招”,傻到接受这种最坏的结果呢?
在解释这个问题之前,笔者首先说明一下,囚徒困境和其它的博弈一样,都需要有2个前提假设:囚徒A和B两人都是自利理性的个人,即只要给出两种可选的策略,每一方将总是选择其中对他更有利的那种策略;两人无法沟通,要在不知道对方所选结果的情况下,独自进行策略选择。
囚犯“思想搏斗过程”大致如下,囚犯A的内心活动是这样:假如他招了,我不招,我就要将牢底坐穿,招了最坏坐10年,还是招了合算;假如他不招,我也不招,只坐2年的牢(因无法串供,风险太大);如果我招,他不招,马上被释放,也是招了合算。
因此,无论囚犯B是坦白还是沉默,囚犯A采取坦白的策略对自己更为有利。
同样,以上推理也适用于囚犯B。结果两个囚徒都坦白了,都被判刑5年。
囚徒困境之所为被称为“困境”,正是在于:如果A、B二人都保持沉默,则都只被判刑2年,显然比两人都坦白的结果要好。
两名囚犯都作出招供的选择,这对他们个人来说都是最佳的,即最符合他们个体理性的选择。照博弈论的说法,这是惟一的纳什均衡点。
除了这个均衡点,A与B的任何一人单方面改变选择,他只会得到更加不经济的结果。而在其它的结果中,比如两人都不坦白的情况下,都有一人可以通过单方面改变选择,来减少自己的刑期。可是两人经过一番理性计算后,却选择了一个使自己陷入不利的结局。
其实“囚徒困境”不允许囚犯A和B进行沟通的假设,与实际生活中大部分情况的现实是有差异的。比如,在爱情博弈中,很多恋人会经常花前月下、彻夜厮守;在企业的价格战中,企业之间也会多有沟通,甚至结成价格联盟;即使是20世纪下半世纪的美苏军备竞赛中,两个超级大国也会经常进行外交交谈,及时交换信息。
因此不妨将条件放宽,允许囚犯A和B在审讯室里在一起呆上10分钟,给予他们充分的串供的机会。
很明显,双方交流的主旨就是建立攻守同盟,克服自利心理,甚至可能订立一个口头协议,要求双方都不去坦白。然后,双方再单独被提审。
我们不妨设想囚犯A的心理活动。他一定会认为,如果囚犯B遵守约定的话,则自己坦白就可获得自由;如果囚犯B告密的话,若自己不坦白就会被终生囚禁。事实上,囚犯A的策略并没有因为简单的沟通或协议而摆脱两难境地。对于囚犯B也是一样。
虽然“坦白从宽,抗拒从严”的道理人人都懂,而从博弈论的角度来看,实际上就是一个囚徒困境的应用。“囚徒困境”被看成是博弈论的代表性案例,不仅因为其简单易懂,还在于它的现象在日常生活中广泛存在。
比如,恋人们在恋爱中的海誓山盟,最终还是分手;企业之间相互沟通合作结成战略关系时是信誓旦旦,但价格战仍然会爆发;美苏两国经常会晤,甚至签订核不扩散条约,但军费一年高过一年。
囚徒困境的游戏规则,能够让狡猾的罪犯招供,得到应有的惩罚,固然不是坏事。然而,我们不妨假设囚徒A和B完全都是清白的具有理性的大大的良民,这个博弈的纳什均衡并不会因为他们的清白而改变。如果在现实生活中,审案存在对身体的残害,完全可能造成屈打成招的冤假错案。在中国历史上,这种冤案并不是什么稀少的事情。
从更深刻的意义上讲,囚徒困境模型动摇了传统社会学、经济学理论的基础,这是经济学的重大革命。
传统经济学的鼻祖亚当斯密在其传世经典《国民财富的性质和原因的研究》中这样描述市场机制:“当个人在追求他自己的私利时,市场的看不见的手会导致最佳经济后果。”这就是说,每个人的自利行为在“看不见的手”的指引下,追求自身利益最大化的同时也促进了社会公共利益的增长。即自利会带来互利。
传统经济学秉承了亚当斯密的思想。传统经济学认为:因此经济学不必担心人们参与竞争的动力,只需关注如何让每个求利者能够自由参与尽可能展开公平竞争的市场机制。只要市场机制公正,自然会增进社会福利。
但是囚徒困境的结果,恰恰表明个人理性不能通过市场导致社会福利的最优。每一个参与者可以相信市场所提供的一切条件,但无法确信其他参与者是否能与自己一样遵守市场规则。
简单地说就是,在一个集体里,有可能每个人的选择都是理性的,但对于整个集体来说其结果却不是理性的。比如大家所熟悉的股市。股市的参与人数虽然十分庞大,但实际上是只有多与空、机构与机构、散户与散户之间的双方“博弈”,有人将此称之为“零和游戏”。
股市“博弈”双方的多数也处在一种“囚徒困境”中。对于股市中博弈双方来说,当股市涨到最高点时,无论对散户,还是对机构来说,任何一方的最大利益在于“我卖,而你没卖,我获得最大盈利”,而对于双方来说最理想的状态是“大家都不卖,把股市推向一个更高点位,大家都有更多利润空间”。但实际结果却大相径庭,市场“无形之手”没起作用,却是“囚徒困境”起到了决定性的作用。
佛家讲因果报应,儒家讲究“财自道生,利缘义取”。从“囚徒困境”看来,如果一味地想算计别人,算来算去,最后却算计到自己头上来了。如果我们将“囚徒困境”故事中的无期徒刑改为死刑,那么“机关算尽太聪明,反误了卿卿性命”用在这里是再恰当不过了。
那么怎么样才能摆脱“囚徒困境”呢?
博弈双方都付出代价,失去自己不愿失去的东西,但只有这样才能共存并且摆脱囚徒困境,这有如壮士断臂,不得不为,也乐得为之。
如果说“兄弟阋于墙,共御外侮”是理想化的摆脱囚徒困境的策略,那么出卖“兄弟”以还得自己的平安,则是处于囚徒困境下本能的选择。趋利避害是人的本能,在经济行为和社会行为中这一本能都鲜明地体现着。
值得注意的是,并不是所有的“囚徒困境”都需要走出来或都需要解脱。如果所有的罪犯都走出了困境,那么将对社会产生灾难性后果,社会将充满了犯罪和混乱。
“囚徒困境”的破解:合作的约束
“不识庐山真面目,只缘身在此山中。”严格囚徒困境的前提条件是博弈各方不可以进行合作,也就是不能够制订有约束力的协议。但实际上,合作是文明的基础,比如兴修水利、组织国防、创建企业等都是合作而产生的,无怪乎哲学家卢梭写了本书《社会契约论》,认为契约是整个人类社会存在的前提条件之一。
如果囚徒困境只是一次性的博弈,签订协议是毫无意义的,其纳什均衡点并不会改变。可以签订协议的一个最基本的条件,就是博弈需要重复若干次,当然至少大于一次。
就恋爱博弈来看,男女双方在交往的过程中,随时都在博弈,因为相爱的过程中任何一个时点都是有可能分手的。用博弈论的术语来说,这是一种囚徒困境的重复博弈。无数爱情故事中的悲欢离合、精彩迭宕正是这个博弈模型的表现。
当然,那种素不相识一对男女,偶尔在酒吧中相遇,于是宾馆订房、春梦一场,拂晓之后就各自分道扬镳的一夜情,是理所当然的一次性囚徒困境博弈。
我们在这里要注意的是,重复博弈与我们前面所�
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!