ÓÑÇéÌáʾ£ºÈç¹û±¾ÍøÒ³´ò¿ªÌ«Âý»òÏÔʾ²»ÍêÕû£¬Çë³¢ÊÔÊó±êÓÒ¼ü¡°Ë¢Ð¡±±¾ÍøÒ³£¡
the six enneads-µÚ137²¿·Ö
¿ì½Ý²Ù×÷: °´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ °´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ °´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿! Èç¹û±¾ÊéûÓÐÔĶÁÍ꣬ÏëÏ´μÌÐø½Ó×ÅÔĶÁ£¬¿ÉʹÓÃÉÏ·½ "Êղص½ÎÒµÄä¯ÀÀÆ÷" ¹¦ÄÜ ºÍ "¼ÓÈëÊéÇ©" ¹¦ÄÜ£¡
ngly¡¡in¡¡any¡¡case¡¡£§quantity¡¡or¡¡no¡¡quantity£§¡¡be¡¡referred¡¡to¡¡Motion£»¡¡as¡¡must¡¡activity¡¡also¡£¡¡¡¡¡¡¡¡¡¡13¡£¡¡It¡¡has¡¡been¡¡remarked¡¡that¡¡the¡¡continuous¡¡is¡¡effectually¡¡distinguished¡¡from¡¡the¡¡discrete¡¡by¡¡their¡¡possessing¡¡the¡¡one¡¡a¡¡common£»¡¡the¡¡other¡¡a¡¡separate£»¡¡limit¡£¡¡¡¡¡¡¡¡¡¡The¡¡same¡¡principle¡¡gives¡¡rise¡¡to¡¡the¡¡numerical¡¡distinction¡¡between¡¡odd¡¡and¡¡even£»¡¡and¡¡it¡¡holds¡¡good¡¡that¡¡if¡¡there¡¡are¡¡differentiae¡¡found¡¡in¡¡both¡¡contraries£»¡¡they¡¡are¡¡either¡¡to¡¡be¡¡abandoned¡¡to¡¡the¡¡objects¡¡numbered£»¡¡or¡¡else¡¡to¡¡be¡¡considered¡¡as¡¡differentiae¡¡of¡¡the¡¡abstract¡¡numbers£»¡¡and¡¡not¡¡of¡¡the¡¡numbers¡¡manifested¡¡in¡¡the¡¡sensible¡¡objects¡£¡¡If¡¡the¡¡numbers¡¡are¡¡logically¡¡separable¡¡from¡¡the¡¡objects£»¡¡that¡¡is¡¡no¡¡reason¡¡why¡¡we¡¡should¡¡not¡¡think¡¡of¡¡them¡¡as¡¡sharing¡¡the¡¡same¡¡differentiae¡£¡¡¡¡¡¡¡¡¡¡But¡¡how¡¡are¡¡we¡¡to¡¡differentiate¡¡the¡¡continuous£»¡¡comprising¡¡as¡¡it¡¡does¡¡line£»¡¡surface¡¡and¡¡solid£¿¡¡The¡¡line¡¡may¡¡be¡¡rated¡¡as¡¡of¡¡one¡¡dimension£»¡¡the¡¡surface¡¡as¡¡of¡¡two¡¡dimensions£»¡¡the¡¡solid¡¡as¡¡of¡¡three£»¡¡if¡¡we¡¡are¡¡only¡¡making¡¡a¡¡calculation¡¡and¡¡do¡¡not¡¡suppose¡¡that¡¡we¡¡are¡¡dividing¡¡the¡¡continuous¡¡into¡¡its¡¡species£»¡¡for¡¡it¡¡is¡¡an¡¡invariable¡¡rule¡¡that¡¡numbers£»¡¡thus¡¡grouped¡¡as¡¡prior¡¡and¡¡posterior£»¡¡cannot¡¡be¡¡brought¡¡into¡¡a¡¡common¡¡genus£»¡¡there¡¡is¡¡no¡¡common¡¡basis¡¡in¡¡first£»¡¡second¡¡and¡¡third¡¡dimensions¡£¡¡Yet¡¡there¡¡is¡¡a¡¡sense¡¡in¡¡which¡¡they¡¡would¡¡appear¡¡to¡¡be¡¡equal¡¡¡namely£»¡¡as¡¡pure¡¡measures¡¡of¡¡Quantity£º¡¡of¡¡higher¡¡and¡¡lower¡¡dimensions£»¡¡they¡¡are¡¡not¡¡however¡¡more¡¡or¡¡less¡¡quantitative¡£¡¡¡¡¡¡¡¡¡¡Numbers¡¡have¡¡similarly¡¡a¡¡common¡¡property¡¡in¡¡their¡¡being¡¡numbers¡¡all£»¡¡and¡¡the¡¡truth¡¡may¡¡well¡¡be£»¡¡not¡¡that¡¡One¡¡creates¡¡two£»¡¡and¡¡two¡¡creates¡¡three£»¡¡but¡¡that¡¡all¡¡have¡¡a¡¡common¡¡source¡£¡¡¡¡¡¡¡¡¡¡Suppose£»¡¡however£»¡¡that¡¡they¡¡are¡¡not¡¡derived¡¡from¡¡any¡¡source¡¡whatever£»¡¡but¡¡merely¡¡exist£»¡¡we¡¡at¡¡any¡¡rate¡¡conceive¡¡them¡¡as¡¡being¡¡derived£»¡¡and¡¡so¡¡may¡¡be¡¡assumed¡¡to¡¡regard¡¡the¡¡smaller¡¡as¡¡taking¡¡priority¡¡over¡¡the¡¡greater£º¡¡yet£»¡¡even¡¡so£»¡¡by¡¡the¡¡mere¡¡fact¡¡of¡¡their¡¡being¡¡numbers¡¡they¡¡are¡¡reducible¡¡to¡¡a¡¡single¡¡type¡£¡¡¡¡¡¡¡¡¡¡What¡¡applies¡¡to¡¡numbers¡¡is¡¡equally¡¡true¡¡of¡¡magnitudes£»¡¡though¡¡here¡¡we¡¡have¡¡to¡¡distinguish¡¡between¡¡line£»¡¡surface¡¡and¡¡solid¡¡¡the¡¡last¡¡also¡¡referred¡¡to¡¡as¡¡¡¨body¡¨¡¡¡in¡¡the¡¡ground¡¡that£»¡¡while¡¡all¡¡are¡¡magnitudes£»¡¡they¡¡differ¡¡specifically¡£¡¡¡¡¡¡¡¡¡¡It¡¡remains¡¡to¡¡enquire¡¡whether¡¡these¡¡species¡¡are¡¡themselves¡¡to¡¡be¡¡divided£º¡¡the¡¡line¡¡into¡¡straight£»¡¡circular£»¡¡spiral£»¡¡the¡¡surface¡¡into¡¡rectilinear¡¡and¡¡circular¡¡figures£»¡¡the¡¡solid¡¡into¡¡the¡¡various¡¡solid¡¡figures¡¡¡sphere¡¡and¡¡polyhedra£º¡¡whether¡¡these¡¡last¡¡should¡¡be¡¡subdivided£»¡¡as¡¡by¡¡the¡¡geometers£»¡¡into¡¡those¡¡contained¡¡by¡¡triangular¡¡and¡¡quadrilateral¡¡planes£º¡¡and¡¡whether¡¡a¡¡further¡¡division¡¡of¡¡the¡¡latter¡¡should¡¡be¡¡performed¡£¡¡¡¡¡¡¡¡¡¡14¡£¡¡How¡¡are¡¡we¡¡to¡¡classify¡¡the¡¡straight¡¡line£¿¡¡Shall¡¡we¡¡deny¡¡that¡¡it¡¡is¡¡a¡¡magnitude£¿¡¡¡¡¡¡¡¡¡¡The¡¡suggestion¡¡may¡¡be¡¡made¡¡that¡¡it¡¡is¡¡a¡¡qualified¡¡magnitude¡£¡¡May¡¡we¡¡not£»¡¡then£»¡¡consider¡¡straightness¡¡as¡¡a¡¡differentia¡¡of¡¡¡¨line¡¨£¿¡¡We¡¡at¡¡any¡¡rate¡¡draw¡¡on¡¡Quality¡¡for¡¡differentiae¡¡of¡¡Substance¡£¡¡¡¡¡¡¡¡¡¡The¡¡straight¡¡line¡¡is£»¡¡thus£»¡¡a¡¡quantity¡¡plus¡¡a¡¡differentia£»¡¡but¡¡it¡¡is¡¡not¡¡on¡¡that¡¡account¡¡a¡¡composite¡¡made¡¡up¡¡of¡¡straightness¡¡and¡¡line£º¡¡if¡¡it¡¡be¡¡a¡¡composite£»¡¡the¡¡composite¡¡possesses¡¡a¡¡differentiae¡¡of¡¡its¡¡own¡£¡¡¡¡¡¡¡¡¡¡But¡¡£§if¡¡the¡¡line¡¡is¡¡a¡¡quantity£§¡¡why¡¡is¡¡not¡¡the¡¡product¡¡of¡¡three¡¡lines¡¡included¡¡in¡¡Quantity£¿¡¡The¡¡answer¡¡is¡¡that¡¡a¡¡triangle¡¡consists¡¡not¡¡merely¡¡of¡¡three¡¡lines¡¡but¡¡of¡¡three¡¡lines¡¡in¡¡a¡¡particular¡¡disposition£»¡¡a¡¡quadrilateral¡¡of¡¡four¡¡lines¡¡in¡¡a¡¡particular¡¡disposition£º¡¡even¡¡the¡¡straight¡¡line¡¡involves¡¡disposition¡¡as¡¡well¡¡as¡¡quantity¡£¡¡¡¡¡¡¡¡¡¡Holding¡¡that¡¡the¡¡straight¡¡line¡¡is¡¡not¡¡mere¡¡quantity£»¡¡we¡¡should¡¡naturally¡¡proceed¡¡to¡¡assert¡¡that¡¡the¡¡line¡¡as¡¡limited¡¡is¡¡not¡¡mere¡¡quantity£»¡¡but¡¡for¡¡the¡¡fact¡¡that¡¡the¡¡limit¡¡of¡¡a¡¡line¡¡is¡¡a¡¡point£»¡¡which¡¡is¡¡in¡¡the¡¡same¡¡category£»¡¡Quantity¡£¡¡Similarly£»¡¡the¡¡limited¡¡surface¡¡will¡¡be¡¡a¡¡quantity£»¡¡since¡¡lines£»¡¡which¡¡have¡¡a¡¡far¡¡better¡¡right¡¡than¡¡itself¡¡to¡¡this¡¡category£»¡¡constitute¡¡its¡¡limits¡£¡¡With¡¡the¡¡introduction¡¡of¡¡the¡¡limited¡¡surface¡¡¡rectangle£»¡¡hexagon£»¡¡polygon¡¡¡into¡¡the¡¡category¡¡of¡¡Quantity£»¡¡this¡¡category¡¡will¡¡be¡¡brought¡¡to¡¡include¡¡every¡¡figure¡¡whatsoever¡£¡¡¡¡¡¡¡¡¡¡If¡¡however¡¡by¡¡classing¡¡the¡¡triangle¡¡and¡¡the¡¡rectangle¡¡as¡¡qualia¡¡we¡¡propose¡¡to¡¡bring¡¡figures¡¡under¡¡Quality£»¡¡we¡¡are¡¡not¡¡thereby¡¡precluded¡¡from¡¡assigning¡¡the¡¡same¡¡object¡¡to¡¡more¡¡categories¡¡than¡¡one£º¡¡in¡¡so¡¡far¡¡as¡¡it¡¡is¡¡a¡¡magnitude¡¡¡a¡¡magnitude¡¡of¡¡such¡¡and¡¡such¡¡a¡¡size¡¡¡it¡¡will¡¡belong¡¡to¡¡Quantity£»¡¡in¡¡so¡¡far¡¡as¡¡it¡¡presents¡¡a¡¡particular¡¡shape£»¡¡to¡¡Quality¡£¡¡¡¡¡¡¡¡¡¡It¡¡may¡¡be¡¡urged¡¡that¡¡the¡¡triangle¡¡is¡¡essentially¡¡a¡¡particular¡¡shape¡£¡¡Then¡¡what¡¡prevents¡¡our¡¡ranking¡¡the¡¡sphere¡¡also¡¡as¡¡a¡¡quality£¿¡¡¡¡¡¡¡¡¡¡To¡¡proceed¡¡on¡¡these¡¡lines¡¡would¡¡lead¡¡us¡¡to¡¡the¡¡conclusion¡¡that¡¡geometry¡¡is¡¡concerned¡¡not¡¡with¡¡magnitudes¡¡but¡¡with¡¡Quality¡£¡¡But¡¡this¡¡conclusion¡¡is¡¡untenable£»¡¡geometry¡¡is¡¡the¡¡study¡¡of¡¡magnitudes¡£¡¡The¡¡differences¡¡of¡¡magnitudes¡¡do¡¡not¡¡eliminate¡¡the¡¡existence¡¡of¡¡magnitudes¡¡as¡¡such£»¡¡any¡¡more¡¡than¡¡the¡¡differences¡¡of¡¡substances¡¡annihilate¡¡the¡¡substances¡¡themselves¡£¡¡¡¡¡¡¡¡¡¡Moreover£»¡¡every¡¡surface¡¡is¡¡limited£»¡¡it¡¡is¡¡impossible¡¡for¡¡any¡¡surface¡¡to¡¡be¡¡infinite¡¡in¡¡extent¡£¡¡¡¡¡¡¡¡¡¡Again£»¡¡when¡¡I¡¡find¡¡Quality¡¡bound¡¡up¡¡with¡¡Substance£»¡¡I¡¡regard¡¡it¡¡as¡¡substantial¡¡quality£º¡¡I¡¡am¡¡not¡¡less£»¡¡but¡¡far¡¡more£»¡¡disposed¡¡to¡¡see¡¡in¡¡figures¡¡or¡¡shapes¡¡£§qualitative£§¡¡varieties¡¡of¡¡Quantity¡£¡¡Besides£»¡¡if¡¡we¡¡are¡¡not¡¡to¡¡regard¡¡them¡¡as¡¡varieties¡¡of¡¡magnitude£»¡¡to¡¡what¡¡genus¡¡are¡¡we¡¡to¡¡assign¡¡them£¿¡¡¡¡¡¡¡¡¡¡Suppose£»¡¡then£»¡¡that¡¡we¡¡allow¡¡differences¡¡of¡¡magnitude£»¡¡we¡¡commit¡¡ourselves¡¡to¡¡a¡¡specific¡¡classification¡¡of¡¡the¡¡magnitudes¡¡so¡¡differentiated¡£¡¡¡¡¡¡¡¡¡¡15¡£¡¡How¡¡far¡¡is¡¡it¡¡true¡¡that¡¡equality¡¡and¡¡inequality¡¡are¡¡characteristic¡¡of¡¡Quantity£¿¡¡¡¡¡¡¡¡¡¡Triangles£»¡¡it¡¡is¡¡significant£»¡¡are¡¡said¡¡to¡¡be¡¡similar¡¡rather¡¡than¡¡equal¡£¡¡But¡¡we¡¡also¡¡refer¡¡to¡¡magnitudes¡¡as¡¡similar£»¡¡and¡¡the¡¡accepted¡¡connotation¡¡of¡¡similarity¡¡does¡¡not¡¡exclude¡¡similarity¡¡or¡¡dissimilarity¡¡in¡¡Quantity¡£¡¡It¡¡may£»¡¡of¡¡course£»¡¡be¡¡the¡¡case¡¡that¡¡the¡¡term¡¡¡¨similarity¡¨¡¡has¡¡a¡¡different¡¡sense¡¡here¡¡from¡¡that¡¡understood¡¡in¡¡reference¡¡to¡¡Quality¡£¡¡¡¡¡¡¡¡¡¡Furthermore£»¡¡if¡¡we¡¡are¡¡told¡¡that¡¡equality¡¡and¡¡inequality¡¡are¡¡characteristic¡¡of¡¡Quantity£»¡¡that¡¡is¡¡not¡¡to¡¡deny¡¡that¡¡similarity¡¡also¡¡may¡¡be¡¡predicated¡¡of¡¡certain¡¡quantities¡£¡¡If£»¡¡on¡¡the¡¡contrary£»¡¡similarity¡¡and¡¡dissimilarity¡¡are¡¡to¡¡be¡¡confined¡¡to¡¡Quality£»¡¡the¡¡terms¡¡as¡¡applied¡¡to¡¡Quantity¡¡must£»¡¡as¡¡we¡¡have¡¡said£»¡¡bear¡¡a¡¡different¡¡meaning¡£¡¡¡¡¡¡¡¡¡¡But¡¡suppose¡¡similarity¡¡to¡¡be¡¡identical¡¡in¡¡both¡¡genera£»¡¡Quantity¡¡and¡¡Quality¡¡must¡¡then¡¡be¡¡expected¡¡to¡¡reveal¡¡other¡¡properties¡¡held¡¡in¡¡common¡£¡¡¡¡¡¡¡¡¡¡May¡¡the¡¡truth¡¡be¡¡this£º¡¡that¡¡similarity¡¡is¡¡predicable¡¡of¡¡Quantity¡¡only¡¡in¡¡so¡¡far¡¡as¡¡Quantity¡¡possesses¡¡£§qualitative£§¡¡differences£¿¡¡But¡¡as¡¡a¡¡general¡¡rule¡¡differences¡¡are¡¡grouped¡¡with¡¡that¡¡of¡¡which¡¡they¡¡are¡¡differences£»¡¡especially¡¡when¡¡the¡¡difference¡¡is¡¡a¡¡difference¡¡of¡¡that¡¡thing¡¡alone¡£¡¡If¡¡in¡¡one¡¡case¡¡the¡¡difference¡¡completes¡¡the¡¡substance¡¡and¡¡not¡¡in¡¡another£»¡¡we¡¡inevitably¡¡class¡¡it¡¡with¡¡that¡¡which¡¡it¡¡completes£»¡¡and¡¡only¡¡consider¡¡it¡¡as¡¡independent¡¡when¡¡it¡¡is¡¡not¡¡complementary£º¡¡when¡¡we¡¡say¡¡¡¨completes¡¡the¡¡substance£»¡¨¡¡we¡¡refer¡¡not¡¡to¡¡Subtance¡¡as¡¡such¡¡but¡¡to¡¡the¡¡differentiated¡¡substance£»¡¡the¡¡particular¡¡object¡¡is¡¡to¡¡be¡¡thought¡¡of¡¡as¡¡receiving¡¡an¡¡accession¡¡which¡¡is¡¡non¡substantial¡£¡¡¡¡¡¡¡¡¡¡We¡¡must¡¡not¡¡however¡¡fad¡¡to¡¡observe¡¡that¡¡we¡¡predicate¡¡equality¡¡of¡¡triangles£»¡¡rectangles£»¡¡and¡¡figures¡¡generally£»¡¡whether¡¡plane¡¡or¡¡solid£º¡¡this¡¡may¡¡be¡¡given¡¡as¡¡a¡¡ground¡¡for¡¡regarding¡¡equality¡¡and¡¡inequality¡¡as¡¡characteristic¡¡of¡¡Quantity¡£¡¡¡¡¡¡¡¡¡¡It¡¡remains¡¡to¡¡enquire¡¡whether¡¡similarity¡¡and¡¡dissimilarity¡¡are¡¡characteristic¡¡of¡¡Quality¡£¡¡¡¡¡¡¡¡¡¡We¡¡have¡¡spoken¡¡of¡¡Quality¡¡as¡¡combining¡¡with¡¡other¡¡entities£»¡¡Matter¡¡and¡¡Quantity£»¡¡to¡¡form¡¡the¡¡complete¡¡Sensible¡¡Substance£»¡¡this¡¡Substance£»¡¡so¡¡called£»¡¡may¡¡be¡¡supposed¡¡to¡¡constitute¡¡the¡¡manifold¡¡world¡¡of¡¡Sense£»¡¡which¡¡is¡¡not¡¡so¡¡much¡¡an¡¡essence¡¡as¡¡a¡¡quale¡£¡¡Thus£»¡¡for¡¡the¡¡essence¡¡of¡¡fire¡¡we¡¡must¡¡look¡¡to¡¡the¡¡Reason¡Principle£»¡¡what¡¡produces¡¡the¡¡visible¡¡aspect¡¡is£»¡¡properly¡¡speaking£»¡¡a¡¡quale¡£¡¡¡¡¡¡¡¡¡¡Man's¡¡essence¡¡will¡¡lie¡¡in¡¡his¡¡Reason¡Principle£»¡¡that¡¡which¡¡is¡¡perfected¡¡in¡¡the¡¡corporeal¡¡nature¡¡is¡¡a¡¡mere¡¡image¡¡of¡¡the¡¡Reason¡Principle¡¡a¡¡quale¡¡rather¡¡than¡¡an¡¡essence¡£¡¡¡¡¡¡¡¡¡¡Consider£º¡¡the¡¡visible¡¡Socrates¡¡is¡¡a¡¡man£»¡¡yet¡¡we¡¡give¡¡the¡¡name¡¡of¡¡Socrates¡¡to¡¡that¡¡likeness¡¡of¡¡him¡¡in¡¡a¡¡portrait£»¡¡which¡¡consists¡¡of¡¡mere¡¡colours£»¡¡mere¡¡pigments£º¡¡similarly£»¡¡it¡¡is¡¡a¡¡Reason¡Principle¡¡which¡¡constitutes¡¡Socrates£»¡¡but¡¡we¡¡apply¡¡the¡¡name¡¡Socrates¡¡to¡¡the¡¡Socrates¡¡we¡¡see£º¡¡in¡¡truth£»¡¡however£»¡¡the¡¡colours¡¡and¡¡shapes¡¡which¡¡make¡¡up¡¡the¡¡visible¡¡Socrates¡¡are¡¡but¡¡reproductions¡¡of¡¡those¡¡in¡¡the¡¡Reason¡Principle£»¡¡while¡¡this¡¡Reason¡Principle¡¡itself¡¡bears¡¡a¡¡corresponding¡¡relation¡¡to¡¡the¡¡truest¡¡Reason¡Principle¡¡of¡¡Man¡£¡¡But¡¡we¡¡need¡¡not¡¡elaborate¡¡this¡¡point¡£¡¡¡¡¡¡¡¡¡¡16¡£¡¡When¡¡each¡¡of¡¡the¡¡entities¡¡bound¡¡up¡¡with¡¡the¡¡pseudo¡substance¡¡is¡¡taken¡¡apart¡¡from¡¡the¡¡rest£»¡¡the¡¡name¡¡of¡¡Quality¡¡is¡¡given¡¡to¡¡that¡¡one¡¡among¡¡them£»¡¡by¡¡which¡¡without¡¡pointing¡¡to¡¡essence¡¡or¡¡quantity¡¡or¡¡motion¡¡we¡¡signify¡¡the¡¡distinctive¡¡mark£»¡¡the¡¡type¡¡or¡¡aspect¡¡of¡¡a¡¡thing¡¡¡for¡¡example£»¡¡the¡¡beauty¡¡or¡¡ugliness¡¡of¡¡a¡¡body¡£¡¡This¡¡beauty¡¡¡need¡¡we¡¡say£¿¡¡¡is¡¡identical¡¡in¡¡name¡¡only¡¡with¡¡Intellectual¡¡Beauty£º¡¡it¡¡follows¡¡that¡¡the¡¡term¡¡¡¨Quality¡¨¡¡as¡¡applied¡¡to¡¡the¡¡Sensible¡¡and¡¡the¡¡Intellectual¡¡is¡¡necessarily¡¡equivocal£»¡¡even¡¡blackness¡¡and¡¡whiteness¡¡are¡¡different¡¡in¡¡the¡¡two¡¡spheres¡£¡¡¡¡¡¡¡¡¡¡But¡¡the¡¡beauty¡¡in¡¡the¡¡germ£»¡¡in¡¡the¡¡particular¡¡Reason¡Principle¡¡¡is¡¡this¡¡the¡¡same¡¡as¡¡the¡¡manifested¡¡beauty£»¡¡or¡¡do¡¡they¡¡coincide¡¡only¡¡in¡¡name£¿¡¡Are¡¡we¡¡to¡¡assign¡¡this¡¡beauty¡¡¡and¡¡the¡¡same¡¡question¡¡applies¡¡to¡¡deformity¡¡in¡¡the¡¡soul¡¡¡to¡¡the¡¡Intellectual¡¡order£»¡¡or¡¡to¡¡the¡¡Sensible£¿¡¡That¡¡beauty¡¡is¡¡different¡¡in¡¡the¡¡two¡¡spheres¡¡is¡¡by¡¡now¡¡clear¡£¡¡If¡¡it¡¡be¡¡embraced¡¡in¡¡Sensible¡¡Quality£»¡¡then¡¡virtue¡¡must¡¡also¡¡be¡¡classed¡¡among¡¡the¡¡qualities¡¡of¡¡the¡¡lower¡£¡¡But¡¡merely¡¡some¡¡virtues¡¡will¡¡take¡¡rank¡¡as¡¡Sensible£»¡¡others¡¡as¡¡Intellectual¡¡qualities¡£¡¡¡¡¡¡¡¡¡¡It¡¡may¡¡even¡¡be¡¡doubted¡¡whether¡¡the¡¡arts£»¡¡as¡¡Reason¡Principles£»¡¡can¡¡fairly¡¡be¡¡among¡¡Sensible¡¡qualities£»¡¡Reason¡Principles£»¡¡it¡¡is¡¡true£»¡¡may¡¡reside¡¡in¡¡Matter£»¡¡but¡¡¡¨matter¡¨¡¡for¡¡them¡¡means¡¡Soul¡£¡¡On¡¡the¡¡other¡¡hand£»¡¡their¡¡being¡¡found¡¡in¡¡company¡¡with¡¡Matter¡¡commits¡¡them¡¡in¡¡some¡¡degree¡¡to¡¡the¡¡lower¡¡sphere¡£¡¡Take¡¡the¡¡case¡¡of¡¡lyrical¡¡music£º¡¡it¡¡is¡¡performed¡¡upon¡¡strings£»¡¡melody£»¡¡which¡¡may¡¡be¡¡termed¡¡a¡¡part¡¡of¡¡the¡¡art£»¡¡is¡¡sensuous¡¡sound¡¡¡though£»¡¡perhaps£»¡¡we¡¡should¡¡speak¡¡here¡¡not¡¡of¡¡parts¡¡but¡¡of¡¡manifestations¡¡£§Acts£§£º¡¡yet£»¡¡called¡¡manifestations£»¡¡they¡¡are¡¡nonetheless¡¡sensuous¡£¡¡The¡¡beauty¡¡inherent¡¡in¡¡body¡¡is¡¡similarly¡¡bodiless£»¡¡but¡¡we¡¡have¡¡assigned¡¡it¡¡to¡¡the¡¡order¡¡of¡¡things¡¡bound¡¡up¡¡with¡¡body¡¡and¡¡subordinate¡¡to¡¡it¡£¡¡¡¡¡¡¡¡¡¡Geometry¡¡and¡¡arithmetic¡¡are£»¡¡we¡¡shall¡¡maintain£»¡¡of¡¡a¡¡twofold¡¡character£»¡¡in¡¡their¡¡earthly¡¡types¡¡they¡¡rank¡¡with¡¡Sensible¡¡Qualit
¿ì½Ý²Ù×÷: °´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ °´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ °´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿!
ÎÂÜ°Ìáʾ£º ο´Ð¡ËµµÄͬʱ·¢±íÆÀÂÛ£¬Ëµ³ö×Ô¼ºµÄ¿´·¨ºÍÆäËüС»ï°éÃÇ·ÖÏíÒ²²»´íŶ£¡·¢±íÊéÆÀ»¹¿ÉÒÔ»ñµÃ»ý·ÖºÍ¾Ñé½±Àø£¬ÈÏÕæдԴ´ÊéÆÀ ±»²ÉÄÉΪ¾«ÆÀ¿ÉÒÔ»ñµÃ´óÁ¿½ð±Ò¡¢»ý·ÖºÍ¾Ñé½±ÀøŶ£¡